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Simulation of shallow �ows over variable topographies using
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SUMMARY

Simulation of shallow �ows over variable topographies is a challenging case for most available shock-
capturing schemes. This problem arises because the source terms and �ux gradients are not balanced
in the numerical computations. Treatments for this problem generally work well on structured grids,
but they are usually too expensive, and most of them are not directly applicable to unstructured grids.
In this paper we propose two e�cient methods to treat the source terms without upwinding and to
satisfy the compatibility condition on unstructured grids. In the �rst method, the calculation of the bed
slope source term is performed by employing a compatible approximation of water depth at the cell
interfaces. In the second one, di�erent components of the bed slope term are considered separately and
a compatible discretization of the components is proposed. The present treatments are applicable for
most schemes including the Roe’s method without changing the performance of the original scheme for
smooth topographies. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The shallow-water (SW) equations govern many practical applications like river and tidal
�ows in estuary and coastal water regions where variable topographies are usually present.
The simulation of these �ows is of great interest for hydraulic engineers, particularly on
unstructured grids. Unstructured grids are attractive because of their �exibility for representing
irregular boundaries and for local mesh re�nement. On the other hand, for many �uvial �ows,
the �ow regime changes from subcritical to supercritical and the employed numerical method
should be able to solve sub, super and trans-critical �ows.
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The discretization of the SW equations has received considerable attention in the past two
decades and many upwind schemes have successfully solved channel �ows [1–4]. However,
their use in the presence of irregular topographies is usually problematic, due to the imbalance
between the source terms and the �ux gradients [5]. In fact, most shock-capturing �nite
volume schemes for the SW equations, are obtained by using approximate Riemann solvers
which have been originally designed for hyperbolic systems without considering the source
terms (such as bed topography in the case of SW equations). Therefore, in the presence of
source terms, those schemes may lead to oscillations. Numerically, this problem is due to an
imbalance between discretized source and �ux terms.
Some modi�cations have been brought to the above-mentioned methods in the case of vari-

able topographies and structured grids. For example, the van Leer’s Q-scheme was extended
by Bermudez and Vazquez-Cendon [5] for the SW equations, and an upwind discretiza-
tion of the source terms for variable topographies has been formulated. The C property,
which states that the scheme should preserve the stagnant conditions, was also introduced.
In the stagnant conditions, water is initially at rest inside of some closed area with vari-
able bottom topography. Hence, without in�uence from outside, the water should stay at rest.
This work has been improved in the case of a general 1D channel with breath variation by
Vazquez-Cendon [6]. The Vazquez-Cendon approach was then extended to �ux di�erence
splitting schemes by Hubbard and Garcia-Navarro [7]. However, upwinding the source terms
is computationally expensive for practical applications because those terms have to be pro-
jected on a basis of eigenvectors. LeVeque [8], introduced a Riemann problem inside a cell for
balancing the source terms and the �ux gradients, and the resulting method was found to pre-
serve both stagnant and quasi-steady-state conditions. However, the LeVeque’s scheme is not
directly transportable to unstructured grids. On the other side, Kurganov and Levy [9] extended
the central-upwind (CU) scheme to the SW equations and by using the water surface elevation
instead of the depth, they proposed an adaptive algorithm for variable topographies. They also
proved that their scheme preserves the steady-state condition with a positive depth, without
resorting to any arti�cial drying and wetting strategies. Unfortunately, their scheme poorly
performs in the case of circulating �ows, as shown by Mohammadian et al. [10]. In a di�er-
ent approach, Alcrudo and Benkhaldon [11] de�ned the bed level such that a sudden change
in the topography occurs at the interface of two cells. They also developed a Riemann solver
at the interface with a sudden change in the bed elevation. However, their approach leads to
several cases of shock and rarefaction wave patterns and it is numerically too expensive. The
ENO and Weighted ENO (WENO) schemes were extended by Vukovic and Sopta [12] to
the SW equations including the source terms, but they are restricted to 1D channels. Jin [13]
developed the interface method, which preserves the steady-state condition up to second-order
accuracy on structured grids, but his approach is not directly usable on unstructured grids. A
second-order gas kinetic scheme for SW �ows over variable topographies was also proposed
by Xu [14]. However, the gas kinetic schemes are basically di�erent from characteristics-based
schemes and they should be tested for challenging test cases such as recirculating �ows. Rogers
et al. [15], proposed a numerical scheme where the balance is achieved by the incorporation
of extra physical information, but, only structured grids are employed. Nujic [16] used the
water level variable instead of the depth and he extracted the gravitational terms from the
�ux functions in the Shu and Osher (SO) scheme [17] to solve for variable topographies.
Unfortunately, the SO scheme [17] generates a high level of numerical di�usion in the case
of recirculating �ows, as shown by Mohammadian et al. [10].
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Zhou et al. [18] introduced the surface gradient method where the depth is interpolated at
the cell interface considering the bed variations. They showed that by combining their approach
with the HLL �ux function [19] the C property is satis�ed, and the resulting scheme performs
well for variable topographies without any extra e�orts for balancing the source terms and the
�ux gradients. However, the C property does not hold on unstructured grids and moreover,
the HLL �ux induces a high level of numerical viscosity in recirculating �ows, as shown in
Mohammadian et al. [10].
Mohammadian et al. [10] showed that the Roe’s method produces much less numerical

di�usion than the SO, HLL and CU schemes in the case of circulating �ows and they devel-
oped a numerical scheme using the Roe’s method which satis�es the C property. However,
although their scheme is mass conservative, it is not fully conservative since the gravity terms
are not discretized in a conservative manner.
In this paper we present two e�cient numerical methods for �ows over variable topogra-

phies on unstructured grids. The proposed two methods are shown to satisfy the C property
when combined with the Roe’s scheme and the surface gradient method [18] for calculating
the water depth at the interface. Several numerical tests are presented to show the performance
of the two schemes over variable topographies.
The main feature of the methods presented here is that, since they are working directly on

the discretization of the source terms, they are not restricted to the Roe’s method and they
can be used with a large range of existing shock-capturing schemes such as the Roe, the
HLL, the HLLC, the CU methods, etc.
This paper is organized as follows. The model equations are introduced in Section 2. The

numerical scheme, the treatment of the source term and the proof of the C property are
presented in Section 3. In Section 4, some numerical test cases show the performance of the
proposed schemes. Some concluding remarks complete the study.

2. GOVERNING EQUATIONS

The 2D SW equations in a conservative form are written as

@U
@t
+∇F=S+∇Fd (1)

with Ut =(h; uh; vh), F=(E;G) and

E=

⎛
⎜⎜⎝

uh

u2h+ 0:5gh2

uvh

⎞
⎟⎟⎠ ; G=

⎛
⎜⎜⎝

vh

uvh

v2h+ 0:5gh2

⎞
⎟⎟⎠ (2)

where h is the water depth, u and v are the velocity components (Figure 1) and g is the
gravitational acceleration.
The superscript d refers to the di�usion and the di�usive �ux has the following form:

Fd = (Ed ;Gd) (3)
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Figure 1. Schematic diagram of an unsteady �ow over an irregular bottom
and the corresponding notation.

where

Ed =

⎛
⎜⎜⎝

0

(�+ �t)h@u=@x

(�+ �t)h@v=@x

⎞
⎟⎟⎠ ; Gd =

⎛
⎜⎜⎝

0

(�+ �t)h@u=@y

(�+ �t)h@v=@y

⎞
⎟⎟⎠ (4)

and � and �t are water and eddy viscosity coe�cients, respectively.
The source term S is written as

S=

⎛
⎜⎜⎜⎝

0

cfu
√
u2 + v2 + gh@z=@x

cf v
√
u2 + v2 + gh@z=@y

⎞
⎟⎟⎟⎠ (5)

where z is the distance between the bed surface and the reference level (Figure 1; z is zero
in the reference level and increases downward) and cf is the friction coe�cient.
The SW equations may also be written in a non-conservative form

@U
@t
+ A

@U
@x
+ B

@U
@y
=S+∇Fd (6)

where A and B are the Jacobian matrices

A =
@E
@U

=

⎛
⎜⎜⎝

0 1 0

−u2 + c2 2u 0

−uv v u

⎞
⎟⎟⎠ ; B=

@G
@U

=

⎛
⎜⎜⎝

0 0 1

−uv v u

−v2 + c2 0 2v

⎞
⎟⎟⎠ (7)

and c=
√
gh is the wave velocity.

The eigenvalues of A and B are

a1 = u+ c; a2 = u; a3 = u− c and b1 = v+ c; b2 = v; b3 = v− c
respectively.
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3. NUMERICAL SCHEME

3.1. Finite volume methods on unstructured grids

A �nite volume method using triangular grids is used in this paper. The variables are located
herein at the geometric centres of the cells, and each triangle represents a control volume.
Let A be the area of a triangle with boundary s. The SW equations are integrated over every
control volume ∫

t

∫
A

(
@U
@t
+∇F− S− ∇Fd

)
dA dt=0 (8)

A high-order time-stepping scheme may be employed to integrate (8) in time. However, for
the sake of simplicity and because the discretization of the source term is the main issue, we
use here the �rst-order forward (explicit) Euler time-stepping scheme. This leads to∫

A

(
Un+1 −Un

�t
+ (∇F− S− ∇Fd)n

)
dA=0 (9)

where superscript n and n+ 1 refer to the variables at time tn and tn+1, respectively. The
application of Gauss theorem to the di�usive and convective �ux integrals gives∫

A

(∇F− ∇Fd) dA=
∮
s
(F · n − Fd · n) ds (10)

and the boundary integral is approximated by a summation over the triangle edges∮
s
(F · n − Fd · n) ds=

3∑
k=1
(Fk · nk − Fdk · nk)�sk (11)

where k represents the edge index of the triangle and nk and �sk are the unit outward normal
vector and the length of the edge k, respectively. The di�usive �uxes are approximated by a
centred scheme

Fd = 0:5(FdR + F
d
L) (12)

A centred scheme for the di�usion term is employed because this scheme is (i) second-
order accurate, (ii) economically justi�ed and (iii) easily incorporated in the whole numerical
procedure, which is in a �ux-based format. Mohammadian et al. [10], have shown that scheme
(12) for the di�usive �uxes, leads to correct simulation of circulating zones.
The convective �uxes F are calculated here by a Godunov-type scheme

F=0:5(FR + FL −�F∗) (13)

where FL = F(UL) and FR =F(UR) are the left and right �ux vectors. The subscripts R and
L represent the evaluation of the right and left sides of the interface, respectively, and �F∗

is the �ux di�erence based on the Roe’s linearization

�F∗ =
3∑
k=1
�̃k |ãk |ẽk (14)
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where ãk and ẽk , k=1; 2; 3, are the eigenvalues and the eigenvectors of Ã, respectively. The
matrix Ã represents the Roe’s average Jacobian matrix, and it satis�es �F= Ã�U with

Ã=
@(F · n)
@u

=

⎛
⎜⎜⎝

0 nx ny

(c̃2 − ũ2)nx − ũṽny 2ũnx + ṽny ũny

−ũṽnx + (c̃2 − ṽ2)ny ṽnx ũnx + 2ṽny

⎞
⎟⎟⎠ (15)

where

ũ=
uR

√
hR + uL

√
hL√

hR +
√
hL

; ṽ=
vR

√
hR + vL

√
hL√

hR +
√
hL

; c̃ =
√
g(hR + hL)=2 (16)

In the case of a dry bed problem, c̃ is calculated in the same manner than in (16), and the
average velocities are

ũ=
uR + uL
2

; ṽ=
uR + uL
2

The eigenvalues of Ã are simply

ã1 = ũnx + ṽny + c̃; ã2 = ũnx + ṽny; ã3 = ũnx + ṽny − c̃ (17)

with the corresponding eigenvectors

ẽ1 =

⎛
⎜⎜⎝

1

ũ+ c̃nx

ṽ+ c̃ny

⎞
⎟⎟⎠ ; ẽ2 =

⎛
⎜⎜⎝

0

−c̃ny
c̃nx

⎞
⎟⎟⎠ ; ẽ3 =

⎛
⎜⎜⎝

1

ũ− c̃nx
ṽ− c̃ny

⎞
⎟⎟⎠ (18)

respectively. The coe�cients �̃k , k=1; 2; 3, are computed as

�̃1 =
�h
2
+
1
2c̃
[�(hu)nx +�(hv)ny − (ũnx + ṽny)�h] (19)

�̃2 =
1
c̃
([�(hv)− ṽ�h]nx − [�(hu)− ũ�h]ny) (20)

�̃3 =
�h
2

− 1
2c̃
[�(hu)nx +�(hv)ny − (ũnx + ṽny)�h] (21)

where �(·)= (·)R − (·)L.
The Roe’s method violates the entropy condition in the case of sonic rarefactions (tran-

scritical �ows) and it predicts an unphysical jump at the sonic point inside the rarefaction
waves, which is physically incorrect. This is because hyperbolic conservation laws admit, for
example, rarefaction shocks and compressive shocks. In the SW equations, only the compres-
sive shocks are physically acceptable. The entropy condition is a criterion for selecting the
physically meaningful solution, in such cases.
Many methods have been proposed to improve the Roe’s method for those �ows such as

Harten and Hyman [19]. Here, we employ an approach proposed by van Leer et al. [20], and
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already used by Bradford and Sanders [21]. It consists of modifying the values |ãk |, k=1; 2; 3,
in (14) when

−�a
k

2
¡ãk¡

�ak

2
(22)

and replacing them by |âk | de�ned as

|âk |= (ã
k)2

�ak
+
�ak

4
(23)

where

�ak =4(akR − akL) (24)

where, akR and a
k
L are calculated as in (17), but using uL; vL; cL and uR ; vR ; cR, respectively.

Such a simple modi�cation enables the scheme to simulate the transcritical �ows correctly.

3.2. Calculation of derivatives

The divergence theorem is employed to obtain the derivatives of a scalar variable c
on a triangular cell i (shown in Figure 2) as(

@c
@x

)
i
=
1
Ai

∫
A

@c
@x
dA≈ c1�y1 + c2�y2 + c3�y3

Ai
(25)

(
@c
@y

)
i
=
1
Ai

∫
A

@c
@y
dA≈ −c1�x1 + c2�x2 + c3�x3

Ai
(26)

where

�y1 =y3 − y2; �x1 = x3 − x2; c1 = (cL1 + c
R
1 )=2 (27)

�y2 =y1 − y3; �x2 = x1 − x3; c2 = (cL2 + c
R
2 )=2 (28)

�y3 =y2 − y1; �x3 = x2 − x1; c3 = (cL3 + c
R
3 )=2 (29)

Figure 2. The triangular cell i with the quantities cRj and c
L
j computed at the right (R) and

left (L) sides, respectively, at a given face j; j=1; 2; 3. The coordinates (xj; yj), j=1; 2; 3,
are located at the three vertices of cell i.
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The viscous terms are then calculated as(
�h
@u
@x

)
i
≈ �hi u1�y1 + u2�y2 + u3�y3

Ai
(30)

3.3. Interpolation scheme

The values of the variables at the left and right sides of the interface are needed to compute the
numerical �uxes in (12) and (13). Those values may be calculated using a piecewise constant
or a piecewise linear interpolation scheme. Because this paper focuses on the discretization of
the source terms, for the sake of simplicity, a piecewise constant approach has been employed
in all the computations (except where mentioned otherwise). However, the methods presented
in the next section to calculate the source terms, also preserve the C property when high
accurate interpolation schemes are employed (e.g. Appendix A). This is because the C property
proofs given in Sections 3 and 4 are independent of the method for calculating the variables
at the left and right sides of the interface, provided �h=0 at the cell interfaces (which is
the case when the surface gradient method employed) in stagnant conditions.
In the surface gradient method [18] the water surface elevation � is interpolated at the cell

faces instead of the water depth. Once �L is calculated, the water depth can be obtained as

hL = �L + ze (31)

where ze is the distance between the bed surface and the reference level at triangle edge mid-
points and is known from topography data. In the case of the stagnant conditions �L = �R = �0,
where �0 is the constant water level and using (31) we obtain hL = hR = �0 + z0, which leads
to �h=0 at the cell faces. This is crucial to guarantee the C property proofs given in the
next section.
An interpolation procedure (Appendix A) is also needed to calculate the depth integrated

discharges uh and vh at the cell interfaces, and we obtain

uL =
(uh)L
hL

(32)

3.4. Computation of bed slope term in variable topographies

As mentioned before, the bed slope term is considered separately in the source term (5). This
usually leads to an incompatible discretization of the water surface gradient term (0:5gh2)
and the bed slope term and consequently produces an arti�cial source term in the numerical
solution. For example, in complicated topographies with the stagnant initial condition, the
water will not remain stagnant [5].
In the following we introduce two methods to overcome this problem.

3.4.1. Method I. Compatible discretization of the bed slope term using a modi�ed water
depth. We �rst explain a simpli�ed version of the method in one dimension. For a cell i,
with edges i+1=2 and i− 1=2, and length �x, the bed slope term is usually approximated as(

gh
@z
@x

)
i
≈ ghi (zi+1=2 − zi−1=2)

�xi
(33)
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where hi is the water depth in the cells. Recall z is the distance between the bed surface and
the reference level (Figure 1). However, (33) does not satisfy the C property. In order to
balance the source terms and the �ux gradients, hi is approximated by ĥi as

ĥi=
hRi+1=2 + h

L
i+1=2 + h

R
i−1=2 + h

L
i−1=2

4
(34)

In the case of the stagnant water conditions

hRi+1=2 = h
L
i+1=2 = hi+1=2 (35)

hRi−1=2 = h
L
i−1=2 = hi−1=2 (36)

�Ri−1=2 = �
L
i−1=2 = �0 (37)

where �0 is the constant water surface elevation over the domain and hence, (�h)k =
hRk − hLk =0, with k= i − 1=2 and i + 1=2. Further, because all velocities are zero (due to
the stagnant conditions), we obtain �F∗=0 and the �ux vector is then

F=

(
0

0:5gh2

)
(38)

In 1D, (9) reduces to (see (10) and (11))

Un+1i −Uni
�t

�x + (Fi+1=2 − Fi−1=2)− Si�x=0
or

Un+1i �x=Uni�x −�t(Fi+1=2 − Fi−1=2) + �tSi�x=0
Therefore, the discretized momentum equation corresponding to cell i (for stagnant conditions)
is (see (38))

(uh)n+1i �xi = (uh)i�xi − 0:5g�t(h2i+1=2 − h2i−1=2) + g�t
hi+1=2 + hi−1=2

2
(zi+1=2 − zi−1=2)

= (uh)i�xi − 0:5g�t(hi+1=2 + hi−1=2)(�i+1=2 − �i−1=2)
= (uh)i�xi (39)

Hence, the C property holds.
This approach can be extended to arbitrary control volumes. Indeed, following (25), the

bed slope term in a cell i (Figure 3) is discretized as(
gh
@z
@x

)
i
≈ ghi

(
@z
@x

)
i
≈ ghi

(
z1�y1 + z2�y2 + z3�y3

Ai

)
(40)

where �y3 is replaced by �y3 =− (�y1 + �y2) and this leads to
(
gh
@z
@x

)
i
=
g
Ai

⎛
⎜⎝hi�y1(z1 − z3)︸ ︷︷ ︸

part 1

+ hi�y2(z2 − z3)︸ ︷︷ ︸
part 2

⎞
⎟⎠ (41)
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Figure 3. The triangular cell i with the quantities hRj and h
L
j computed at the right (R) and

left (L) sides, respectively, at a given face j; j=1; 2; 3. The coordinates (xj; yj), j=1; 2; 3,
are located at the three vertices of cell i.

Again, (41) does not satisfy the C property because there is still an imbalance between the
bed slope and the �ux terms. In order to reach the balance, the right-hand side of (41) is
expressed in two parts (parts 1 and 2). Following the same procedure than in (33) and (34),
we replace hi by

ĥ1–3 =
hR1 + h

L
1 + h

R
3 + h

L
3

4
(42)

and

ĥ2–3 =
hR2 + h

L
2 + h

R
3 + h

L
3

4
(43)

in parts 1 and 2 of (41), respectively (Figure 3), and this leads to(
gh
@z
@x

)
i
=
g
Ai

(
hR1 + h

L
1 + h

R
2 + h

L
2

4
�y1(z1 − z3) + h

R
2 + h

L
2 + h

R
3 + h

L
3

4
�y2(z2 − z3)

)
(44)

Proposition 1
The numerical scheme presented in Sections 3.1–3.3, satis�es the C property with (44).

Proof
In the case of stagnant water conditions we have

hR1 = h
L
1 = h1 (45)

hR2 = h
L
2 = h2 (46)

hR3 = h
L
3 = h3 (47)

�1 = �2 = �3 = �0 (48)
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and the corresponding term of
∫
A

∇F dA in (9) for the x-momentum equation, reduces to∫
A
[@(0:5gh2)=@x] dA. By using the divergence theorem as in (10), it is numerically approx-

imated as (see (11)) 0:5g(h21�y1 + h
2
2�y2 + h

2
3�y3). Therefore, the discretized momentum

equation corresponding to cell i is

(uh)n+1i Ai = (uh)iAi − 0:5g�t(h21�y1 + h22�y2 + h23�y3)

+g�t
(
h1 + h3
2

�y1(z1 − z3) + h2 + h32
�y2(z2 − z3)

)

= (uh)iAi − g�t
4
((h2 + h1)(h2 − z2 − h1 + z1)�y1

+(h3 + h2)(h3 − z3 − h2 + z2)�y2)

= (uh)iAi − g�t
4
((h2 + h1)(�2 − �1)�y1 + (h3 + h2)(�3 − �2)�y2)

= (uh)iAi (49)

The C property thus holds. The extension of the present method for an arbitrary control
volume with m edges is straightforward by considering

m∑
k=1
�yk =0 (50)

Therefore, (40) and (41) could be generalized as(
gh
@z
@x

)
i
≈ ghi

(
@z
@x

)
i
≈ ghi

(∑m
k=1 zk�yk
Ai

)

with �ym=−∑m−1
k=1 �yk is deduced from (50) and this leads to(

gh
@z
@x

)
i
=
g
Ai

(
m−1∑
k=1
ĥk�yk(zk − zm)

)
with

ĥk =
hRk + h

L
k + h

R
m + h

L
m

4

The proof of Proposition 1 is then generalized in a similar manner.

3.4.2. Method II. Considering di�erent components of the bed slope term separately. In
method I, two di�erent approximations (42) and (43) have been used to approximate the
depth inside a given triangular cell in order to balance the source and the �ux gradient
terms. For general control volumes having more than three edges (such as quadrilaterals) the
accuracy of method I may be decreased in the case of stretched cells. This problem motivates
the introduction of method II in which the source and the �ux gradient terms are inherently
balanced by considering di�erent components of the bed slope term separately.
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Here, the bed slope term is written as

gh
@z
@x
= g

@(hz)
@x

− gz @h
@x

=0:5g
@(hz)
@x

+ 0:5g
@(hz)
@x

− gz @h
@x

=0:5g
@(hz)
@x︸ ︷︷ ︸

B1

+ 0:5gh
@z
@x︸ ︷︷ ︸

B2

− 0:5gz @h
@x︸ ︷︷ ︸

B3

(51)

where

B1 =
0:5g
Ai

(
hL1 + h

R
1

2
z1�y1 +

hL2 + h
R
2

2
z2�y2 +

hL3 + h
R
3

2
z3�y3

)
(52)

B2 =
0:5ghi
Ai

(z1�y1 + z2�y2 + z3�y3) (53)

B3 =
0:5gzi
Ai

(
hL1 + h

R
1

2
�y1 +

hL2 + h
R
2

2
�y2 +

hL3 + h
R
3

2
�y3

)
(54)

In the case of a horizontal bed, B1 and B3 cancel each other and B2 is equal to zero.

Proposition 2
The numerical scheme presented in Sections 3.1–3.3, satis�es the C property with (51)–(54).

Proof
The stagnant condition leads to

(uh)n+1i Ai = (uh)iAi − 0:5g�t(h21�y1 + h22�y2 + h23�y3) + �tAi(B1 + B2 + B3)

= (uh)iAi − 0:5g�t(h1(h1 − z1)�y1 + h2(h2 − z2)�y2
+h3(h3 − z3)�y3) + �tAi(B2 − B3)

= (uh)iAi − 0:5g�0�t(h1�y1 + h2�y2 + h3�y3) + �tAi(B2 − B3) (55)

and

(B2 − B3)Ai =0:5ghi((h1 − �1)�y1 + (h2 − �2)�y2 + (h3 − �3)�y3)

−0:5g�tzi(h1�y1 + h2�y2 + h3�y3)

= 0:5g(hi − zi)(h1�y1 + h2�y2 + h3�y3) + 0:5g�t�0hi(�y1 + �y2 + �y3)

= 0:5g�0(h1�y1 + h2�y2 + h3�y3)

= 0:5g�0(h1�y1 + h2�y2 + h3�y3) (56)
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Substituting (56) in (55) we obtain

(uh)n+1i Ai=(uh)iAi (57)

Hence, the C property holds. This proof is directly generalized in the case of an arbitrary
control volume having more than three edges, by adding the corresponding terms
to (52)–(54).

3.5. Computational modelling of wetting and drying fronts

It is generally accepted that the wetting–drying simulation is very hard [22]. This is particularly
the case in real applications with complicated topographies using unstructured grids. Therefore,
an algorithm to treat wetting and drying fronts is generally needed.
In this paper, if the water depth in a cell is less than a speci�ed value hmin, then this cell is

considered as a dry cell. In such a cell all outward �uxes and also the bed slope and friction
source terms are set to zero. Inward �uxes are always active, as a mechanism for wetting the
dry cells.

3.6. Boundary conditions

In order to treat the boundary conditions, the variables at boundary faces are imposed as
following:

Subcritical �ow: in�ow: two external conditions and out�ow: one external condition.
Supercritical �ow: in�ow: three external conditions and out�ow: none.
Solid walls: velocity components are set zero.

All remaining conditions may be calculated based on the characteristics theory, i.e. by
using the information carried out by the outgoing bicharacteristics (the Riemann invariants).
However, in most practical cases those may be simply set to the corresponding values of the
adjacent inner cells.

4. NUMERICAL RESULTS

In order to study the performance of the numerical scheme, some tests have been performed
herein for variable topographies. In all �gures and tables, the SI system has been used, i.e.
the water depth and the water surface elevation are in meters (m) and the water discharge is
in m3 s−1. Note that methods I and II present the same results in the following tests and no
visible di�erence is observed.

4.1. Tidal wave �ow over an irregular topography

The topography for this case [23] is de�ned in Table I and graphically represented in Figure 4.
The initial conditions write

h(x; 0)=H (x) (58)

u(x; 0)=0 (59)
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Table I. Topography for an irregular bed.

x (m) 0 50 100 150 250 300 350 400 425 435 450 475 500 505
z (m) 0 20 2.5 5 5 3 5 5 7.5 8 9 9 9.1 9

x (m) 530 550 565 575 600 650 700 750 800 820 900 950 1000 1500
z (m) 9 6 5.5 5.5 5 4 3 3 2.3 2 1.2 0.4 0 0

Figure 4. Topography for an irregular bed.

with

L=1500m; H (x)=H (0)− z(x); H (0) = 16m

The boundary conditions are

h(0; t)=H (0) + 4− 4 sin
[
�
(

4t
86 400

+
1
2

)]
(60)

u(L; t)=0 (61)

For this test, Bermudez and Vazquez-Cendon [5] derived the following ‘asymptotic’ unsteady
solution by writing the equations in dimensionless form and asymptotic expansions in terms
of the Froude number.

h(x; t) =H (x) + 4− 4 sin
[
�
(

4t
86 400

+
1
2

)]
(62)

u(x; t) =
(x − L)�
5400h(x; t)

cos
[
�
(

4t
86 400

+
1
2

)]
(63)

At time t=10800 s, the numerical results using a CFL number of 0.63 and 100 grid points
are shown in Figure 5 (left). The results of the original scheme, i.e. using (40), (instead of the
proposed method I or II, i.e. (34) or (51), respectively), are also presented in Figure 5 (right).
In this test case, the original scheme shows a high level of oscillations due to the irregular
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Figure 5. Tidal wave �ow over an irregular bed, velocity: Present method (left)
and the original scheme (right).

Figure 6. Tidal wave �ow over an irregular bed, water surface elevation: Present
method (left) and the original scheme (right).

topography which cannot be handled because the imbalance between the source and �ux terms,
while a considerable improvement is observed with method I or II. The numerical results for
water surface are shown in Figure 6, which again show the performance of the proposed
methods. Finally, the numerical result of velocity and water surface elevation obtained by the
proposed method and the original scheme for the stagnant conditions are presented for t=40 s
in Figures 7 and 8, respectively. As, shown, contrary to the original scheme, the proposed
method can preserve the stagnant conditions.

4.2. A surge crossing a step

Here we consider a surge crossing a step. A channel of length 10 000m is used with a step of
height 2m, located at the middle of the channel (Figure 9). This test case has been previously
studied by Hu et al. [24] who replaced the step by a steep bed slope. A grid of 400 uniform
cells is used here.
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Figure 7. Stagnant condition over an irregular bed, velocity: Present method (left)
and the original scheme (right).

Figure 8. Stagnant condition over an irregular bed, water surface: Present
method (left) and the original scheme (right).

Figure 9. Surge crossing a step: computed water surface at t=600 s.
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Figure 10. Computed water surface level at t=0:7 s with �=0:01: Present
method (left) and the original scheme (right).

The initial water surface is 5m in the channel, the water depth at the upstream end is 10m,
and the velocity of the surge at the entrance is de�ned as [24]

u(0; t)= (�u − �d)
√
g(�u + �d)
2�u�d

(64)

where �u=10m and �d=5m.
In Figure 9, the numerical results obtained using method I or II are compared with the

analytical solution [24]. They show the ability of the model in simulating surges over discon-
tinuous bed pro�les.

4.3. One-dimensional, small perturbation of a steady-state solution

A small perturbation of a steady-state solution, proposed by Leveque [8], is a challenging test
for evaluating the performance of numerical schemes over variable topographies. A channel
of length 1.0m is considered with the following topography

z(x; y)=

{−0:8 exp(−5(x − 0:9)2 − 50(y − 0:5)2) for |x − 0:5|60:1
0:0 otherwise

(65)

with a zero initial �ow velocity and a surface pro�le de�ned as

�(x; y)=

{
1:0 + � for 0:1¡x¡0:2

1:0 otherwise
(66)
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Figure 11. Computed water surface level at t=1:8 s with �=0:01: Present
method (bottom) and the original scheme (top).

Following Leveque [8], �=0:01m and the reduced gravitational acceleration is g=1m2 s−1.
Here, a CFL number of 0.99 is used. The numerical results obtained on a very �ne grid (1500
nodes), using method I or II, are used as reference solutions in the absence of an analytical
one. On a grid of 100 nodes, the results obtained with method I or II and the original
scheme are compared with the reference solution in Figure 10. This case is a challenging
one, and most existing schemes have used considerably more grid points than here (such as
600 in Reference [25]). As shown in Figure 10, method I or II can capture the quasi-steady
solutions quite well, and a considerable improvement is observed compared to the original
scheme.

4.4. Two-dimensional, small perturbation of a steady-state solution

In this test case [8], the SW equations are solved in a domain [0; 2]× [0; 1], and the bottom
surface is an elliptical shaped hump

z(x; y)=−0:8 exp(−5(x − 0:9)2 − 50(y − 0:5)2) (67)
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(a)

(b)

(c)

Figure 12. (a) Steady transcritical �ow over a bump without a shock: Water surface elevation;
(b) Steady transcritical �ow over a bump with a shock: Water surface elevation; and (c) Steady

subcritical �ow over a bump: Water surface elevation.

The water surface is initially �at with h(x; y)=1 except for 0:05¡x¡0:15, where
h(x; y)=1:01m. An unstructured grid with 12 344 triangular cells and a CFL number of
0.6 is used for this test. Figure 11 displays the right-going disturbance at t=1:8 s as it prop-
agates past the hump. This shows the ability of the model in simulating 2D-problems with
variable topographies without producing numerical oscillations.
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(a)

(b)

(c)

Figure 13. (a) Water discharge in steady transcritical �ow over a bump without a shock; (b) Water
discharge in steady transcritical �ow over a bump with a shock; and (c) Water discharge in steady

subcritical �ow over a bump without a shock.

4.5. Steady �ow over a bump

The topography is now de�ned [23] as

z(x)=

{
0:2− 0:05(x − 10)2 if 8¡x¡12

0 otherwise
(68)

Depending on the initial and boundary conditions, the �ow may be subcritical, transcritical
(with or without a steady shock), or supercritical. The analytical solution of this problem
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Figure 14. Geometry of the experimental model in the simulation of a dam
break and advance over a triangular obstacle.

Figure 15. Location of the gauging points in the experimental model for the simulation of a dam break
and advance over a triangular obstacle.

is given in Reference [23]. An unstructured grid of average triangle edges equal to 0.075m
was used in all computations. A high-order accurate interpolation scheme (Appendix A) was
employed in this test case.
Three di�erent cases are considered below by imposing downstream and upstream boundary

conditions for the water level (h) and the discharge (uh), respectively:

(i) Transcritical �ow without shock: h=0:66m only when the �ow is subcritical and
uh=1:53m3 h−1.

(ii) Transcritical �ow with shock: h=0:33m and uh=0:18m3 h−1.
(iii) Subcritical �ow: = 2m and uh=4:42m3 h−1.

The surface pro�les are plotted in Figures 12(a)–(c) for method I or II, and they show
good agreements with the analytical solutions. The computed discharges are also compared in
Figures 13(a)–(c) with the analytical ones, which show a low level of numerical oscilla-
tions. It should be mentioned that such a level of numerical oscillations is also present in
most existing schemes. This is because the C property, although widely accepted in the lit-
erature as a good measure to test the ability of numerical schemes in the presence of real

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:473–498



494 A. MOHAMMADIAN AND D. Y. LE ROUX

Figure 16. Time evolution during 40 s of the water depth measured and computed at gauging points:
G4, G10, G11, G13 and G20 in the simulation of a dam break and advance over a triangular obstacle.

Points stand for experimental measures and solid line for numerical results.
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Figure 17. Numerical results obtained with a 1D and a 2D scheme on the water depth
pro�les along the channel at times: T =3; 5; 10 and 20 s in the simulation of a dam

break and advance over a triangular obstacle.

topographies, does not guarantee that the steady-state conditions with non-zero discharge is
well captured.

4.6. Dam break and advance over a triangular obstacle

In this test case, evolution of a dam-break wave over a triangular obstacle is examined.
The channel geometry is presented in Figure 14. The physical model combines a reservoir
connected to a rectangular channel. The length of the entire model is 22.5m. The dam is
situated at x=15:5m. A triangular obstacle (6m long, 0.4m high) is situated 13m downstream
the dam over the bed of the channel. The slopes of the obstacle are symmetric. The initial
conditions considered are 0.75m of water depth in the reservoir and dry bed in the rest of
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the channel. The �xed boundaries are solid walls except for the free outlet. The Manning
roughness coe�cient is 0.0125 for the bed and 0.011 for the vertical walls of the rectangular
channel, values supplied by the experimentalists from a steady �ow test case. Gauging points
are located: G4 at 4m, G10 at 10m, G11 at 11m, G13 at 13m and G20 at 20m as shown
in Figure 15. Experimental data are reported in Reference [27] which are obtained from the
Recherches Hydrauliques Lab. Chatelet together with the University of Bruxelles (Belgium)
under the supervision of J.M. Hiver.
A minimum wet depth of hmin =0:004m was considered in the numerical calculations.

Sensitivity analysis with the 1D model showed that reducing the hmin has minor e�ects on
the numerical results. The predicted and measured water depth time evolutions during 40 s
at the gauging points are presented in Figure 16 which shows a satisfactory concordance.
The water depth and the arrival time of the wave are predicted well at G4, G10 and G11
which are located before the obstacle. It can be observed that. Moreover, the transition from
wet to dry is correctly predicted at point G13, which is a critical point since it is located at
the vertex of. At the last point (G20) a little disagreement between measures and numerical
results is observed but the amount of water is insigni�cant. The same feature is also observed
by Brufau et al. [27] and may be related to vertical non-hydrostatic motions that are ignored
in SW equations.
Finally, Figure 17 compares the numerical results obtained for the water depth at di�erent

times from the 1D and 2D numerical schemes. As it can be seen in Figure 17, results of
two models coincide, which is expected due to the nearly 1D feature of the �ow (i.e. lateral
changes are negligible) and this shows the coherence of both models.

5. CONCLUSION

Two e�cient methods have been proposed to treat the source terms and to satisfy the com-
patibility property on unstructured grids. In the proposed methods, it is not necessary to
perform extra upwinding or Riemann solution for the source terms. Contrary to many avail-
able schemes, our approach can be easily implemented on unstructured grids and it takes
advantage of being �exible for irregular boundaries and local mesh re�nement. Numerical
results indicated that the proposed methods accurately simulate sub, super and transcritical
�ows in complicated topographies and also the circulating �ows.

APPENDIX A: INTERPOLATION SCHEME

In the present cell-centred scheme, the variables are located at the triangle barycentres and the
values of the variables at the left and right sides of the interface are needed to compute the
numerical �uxes and source terms. Consider two adjacent triangles as shown in Figure A1.
A �rst-order approximation of �; uh; vh at left and right-hand side of the cell interfaces is

simply equal to their values in the corresponding cell. For example,

�L = �bL

(uh)L = (uh)bL

(vh)L = (vh)bL
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Figure A1. Two adjacent triangles with barycentres bL and bR, where lL and lR are the lengths between
the mid-side node of the common face and bL and bR, respectively.

Various methods have been proposed for developing higher-order accurate interpolation
schemes. Here, some details of a high-order monotonic interpolation method, is described.
For a scalar variable such as �, the interface values �L and �R (on the left and right

sides of a given face, respectively) are calculated by the � scheme [28]. For example, �L is
calculated as

�L = �bL +
s
4
[(1− �s)�− + (1 + �s)�+] (A1)

�− = (�bL − �p); �+=[2lL=(lL + lR)](�bR − �bL) (A2)

where �=−1 leads to an upwind scheme, �=0 to the Fromm scheme, �=1 to a central
scheme and �=1=3 to a third-order scheme (in 1D).
The slope limiter s, is chosen according to Battina [28]

s=
2�−�+ + �
�2− +�2

+ + �
(A3)

where � is a very small number for avoiding division by zero in the regions of mild slope.
The interface values of uh and vh are calculated similarly.
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